Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Arctic amplification (AA), referring to the phenomenon of amplified warming in the Arctic compared to the warming in the rest of the globe, is generally attributed to the increasing concentrations of carbon dioxide (CO2) in the atmosphere. However, little attention has been paid to the mechanisms and quantitative variations of AA under decreasing levels of CO2, when cooling where the Arctic region is considerably larger than over the rest of the planet. Analyzing climate model experiments forced with a wide range of CO2concentrations (from 1/8× to 8×CO2, with respect to preindustrial levels), we show that AA indeed occurs under decreasing CO2concentrations, and it is stronger than AA under increasing CO2concentrations. Feedback analysis reveals that the Planck, lapse-rate, and albedo feedbacks are the main contributors to producing AAs forced by CO2increase and decrease, but the stronger lapse-rate feedback associated with decreasing CO2level gives rise to stronger AA. We further find that the increasing CO2concentrations delay the peak month of AA from November to December or January, depending on the forcing strength. In contrast, decreasing CO2levels cannot shift the peak of AA earlier than October, as a consequence of the maximum sea-ice increase in September which is independent of forcing strength. Such seasonality changes are also presented in the lapse-rate feedback, but do not appear in other feedbacks nor in the atmospheric and oceanic heat transport processeses. Our results highlight the strongly asymmetric responses of AA, as evidenced by the different changes in its intensity and seasonality, to the increasing and decreasing CO2concentrations. These findings have significant implications for understanding how carbon removal could impact the Arctic climate, ecosystems, and socio-economic activities.more » « less
-
The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)—key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.more » « less
-
Abstract Emission of anthropogenic greenhouse gases has resulted in greater Arctic warming compared to global warming, known as Arctic amplification (AA). From an energy‐balance perspective, the current Arctic climate is in radiative‐advective equilibrium (RAE) regime, in which radiative cooling is balanced by advective heat flux convergence. Exploiting a suite of climate model simulations with varying carbon dioxide () concentrations, we link the northern high‐latitude regime variation and transition to AA. The dominance of RAE regime in northern high‐latitudes under reduction relates to stronger AA, whereas the RAE regime transition to non‐RAE regime under increase corresponds to a weaker AA. Examinations on the spatial and seasonal structures reveal that lapse‐rate and sea‐ice processes are crucial mechanisms. Our findings suggest that if concentration continues to rise, the Arctic could transition into a non‐RAE regime accompanied with a weaker AA.more » « less
An official website of the United States government
